Ejemplos examples
Usuario:
Contraseña:

Inicio | Nuevos | Populares | Top | Publicar Ejemplos | Pedir Ejemplos

Por ejemplo: Metáforas, hiatos, adjetivos, sustantivos,...

Ejemplos de...

Únete a nosotros en FB

Estás en: Ejemplos10.com > Ciencias > Biología y biotecnología > Ecología de poblaciones, comunidades y ecosistemas

Ecología de poblaciones, comunidades y ecosistemas

Enviado por gknight
Publicado el 2010-11-27 13:11:54

Ejemplos de Ecología de poblaciones, comunidades y ecosistemas



Ecología, estudio de la relación entre los organismos y su medio ambiente físico y biológico. El medio ambiente físico incluye la luz y el calor o radiación solar, la humedad, el viento, el oxígeno, el dióxido de carbono y los nutrientes del suelo, el agua y la atmósfera. El medio ambiente biológico está formado por los organismos vivos, principalmente plantas y animales.

Debido a los diferentes enfoques necesarios para estudiar a los organismos en su medio ambiente natural, la ecología se sirve de disciplinas como la climatología, la hidrología, la física, la química, la geología y el análisis de suelos. Para estudiar las relaciones entre organismos, la ecología recurre a ciencias tan dispares como el comportamiento animal, la taxonomía, la fisiología y las matemáticas.

El creciente interés de la opinión pública respecto a los problemas del medio ambiente ha convertido la palabra ecología en un término a menudo mal utilizado. Se confunde con los programas ambientales y la ciencia medioambiental. Aunque se trata de una disciplina científica diferente, la ecología contribuye al estudio y la comprensión de los problemas del medio ambiente.

El término ecología fue acuñado por el biólogo alemán Ernst Heinrich Haeckel en 1869; deriva del griego oikos (hogar) y comparte su raíz con economía. Es decir, ecología significa el estudio de la economía de la naturaleza. En parte, la ecología moderna empezó con Charles Darwin. Al desarrollar la teoría de la evolución, Darwin hizo hincapié en la adaptación de los organismos a su medio ambiente por medio de la selección natural. También hicieron grandes contribuciones geógrafos de plantas como Alexander von Humboldt, profundamente interesados en el cómo y el por qué de la distribución de los vegetales en el mundo.

La biosfera

El delgado manto de vida que cubre la Tierra recibe el nombre de biosfera. Para clasificar sus regiones se emplean diferentes enfoques.

Biomas

Las grandes unidades de vegetación son llamadas formaciones vegetales por los ecólogos europeos y biomas por los de América del Norte. La principal diferencia entre ambos términos es que los biomas incluyen la vida animal asociada. Los grandes biomas, no obstante, reciben el nombre de las formas dominantes de vida vegetal.

Bajo la influencia de la latitud, la elevación y los regímenes asociados de humedad y temperatura, los biomas terrestres varían geográficamente de los trópicos al Ártico, e incluyen diversos tipos de bosques, praderas, monte bajo y desiertos. Estos biomas incluyen también las comunidades de agua dulce asociadas: corrientes, lagos, estanques y humedales. Los medios ambientes marinos, que algunos ecólogos también consideran biomas, comprenden el océano abierto, las regiones litorales (aguas poco profundas), las regiones bentónicas (del fondo oceánico), las costas rocosas, las playas, los estuarios y las llanuras mareales asociadas.

Ecosistemas

Resulta más útil considerar a los entornos terrestres y acuáticos, ecosistemas, término acuñado en 1935 por el ecólogo vegetal sir Arthur George Tansley para realzar el concepto de que cada hábitat es un todo integrado. Un sistema es un conjunto de partes interdependientes que funcionan como una unidad y requiere entradas y salidas. Las partes fundamentales de un ecosistema son los productores (plantas verdes), los consumidores (herbívoros y carnívoros), los organismos responsables de la descomposición (hongos y bacterias), y el componente no viviente o abiótico, formado por materia orgánica muerta y nutrientes presentes en el suelo y el agua. Las entradas al ecosistema son energía solar, agua, oxígeno, dióxido de carbono, nitrógeno y otros elementos y compuestos. Las salidas del ecosistema incluyen el calor producido por la respiración, agua, oxígeno, dióxido de carbono y nutrientes. La fuerza impulsora fundamental es la energía solar.

Energía y nutrientes

Los ecosistemas funcionan con energía procedente del Sol, que fluye en una dirección, y con nutrientes, que se reciclan continuamente. Las plantas usan la energía lumínica transformándola, por medio de un proceso llamado fotosíntesis, en energía química bajo la forma de hidratos de carbono y otros compuestos. Esta energía es transferida a todo el ecosistema a través de una serie de pasos basados en el comer o ser comido, la llamada cadena trófica. En la transferencia de la energía, cada paso se compone de varios niveles tróficos o de alimentación: plantas, herbívoros (que comen vegetales), dos o tres niveles de carnívoros (que comen carne), y organismos responsables de la descomposición. Sólo parte de la energía fijada por las plantas sigue este camino, llamado cadena o red alimentaria de producción. La materia vegetal y animal no utilizada en esta red, como hojas caídas, ramas, raíces, troncos de árbol y cuerpos muertos de animales, dan sustento a la cadena o red alimentaria de la descomposición. Las bacterias, hongos y animales que se alimentan de materia muerta se convierten en fuente de energía para niveles tróficos superiores vinculados a la red alimentaria de producción. De este modo la naturaleza aprovecha al máximo la energía inicialmente fijada por las plantas.

En ambas redes alimentarias el número de niveles tróficos es limitado debido a que en cada transferencia se pierde gran cantidad de energía (como calor de respiración) que deja de ser utilizable o transferible al siguiente nivel trófico. Así pues, cada nivel trófico contiene menos energía que el que le sustenta. Debido a esto, por ejemplo, los ciervos o los alces (herbívoros) son más abundantes que los lobos (carnívoros).

El flujo de energía alimenta el ciclo biogeoquímico o de los nutrientes. El ciclo de los nutrientes comienza con su liberación por desgaste y descomposición de la materia orgánica en una forma que puede ser empleada por las plantas. Éstas incorporan los nutrientes disponibles en el suelo y el agua y los almacenan en sus tejidos. Los nutrientes pasan de un nivel trófico al siguiente a lo largo de la cadena trófica. Dado que muchas plantas y animales no llegan a ser comidos, en última instancia los nutrientes que contienen sus tejidos, tras recorrer la red alimentaria de la descomposición, son liberados por la descomposición bacteriana y fúngica, proceso que reduce los compuestos orgánicos complejos a compuestos inorgánicos sencillos que quedan a disposición de las plantas.

Desequilibrios

Los nutrientes circulan en el interior de los ecosistemas. No obstante, existen pérdidas o salidas, y éstas deben equilibrarse por medio de nuevas entradas o el ecosistema dejará de funcionar. Las entradas de nutrientes al sistema proceden de la erosión y desgaste de las rocas, del polvo transportado por el aire, y de las precipitaciones, que pueden transportar materiales a grandes distancias. Los ecosistemas terrestres pierden cantidades variables de nutrientes, arrastrados por las aguas y depositados en ecosistemas acuáticos y en las tierras bajas asociadas. La erosión, la tala de bosques y las cosechas extraen del suelo una cantidad considerable de nutrientes que deben ser reemplazados. De no ser así, el ecosistema se empobrece. Es por esto por lo que las tierras de cultivo han de ser fertilizadas.

Si la entrada de un nutriente excede en mucho a su salida, el ciclo de nutrientes del ecosistema afectado se sobrecarga, y se produce contaminación. La contaminación puede considerarse una entrada de nutrientes que supera la capacidad del ecosistema para procesarlos. Los nutrientes perdidos por erosión y lixivación en las tierras de cultivo, junto con las aguas residuales urbanas y los residuos industriales, van a parar a los ríos, lagos y estuarios. Estos contaminantes destruyen las plantas y los animales que no pueden tolerar su presencia o el cambio medioambiental que producen; al mismo tiempo favorecen a algunos organismos con mayor tolerancia al cambio. Así, en las nubes llenas de dióxido de azufre y óxidos de nitrógeno procedentes de las áreas industriales, éstos se transforman en ácidos sulfúrico y nítrico diluidos y caen a tierra, en forma de lluvia ácida, sobre grandes extensiones de ecosistemas terrestres y acuáticos. Esto altera las relaciones ácido-base en algunos de ellos, mueren los peces y los invertebrados acuáticos y se incrementa la acidez del suelo, lo que reduce el crecimiento forestal en los ecosistemas septentrionales y en otros que carecen de calizas para neutralizar el ácido.

Poblaciones y comunidades

Las unidades funcionales de un ecosistema son las poblaciones de organismos a través de las cuales circulan la energía y los nutrientes. Una población es un grupo de organismos de la misma especie que comparten el mismo espacio y tiempo. Los grupos de poblaciones de un ecosistema interactúan de varias formas. Estas poblaciones interdependientes forman una comunidad, que abarca la porción biótica del ecosistema.

Diversidad

La comunidad tiene ciertos atributos, entre ellos la dominancia y la diversidad de especies. La dominancia se produce cuando una o varias especies controlan las condiciones ambientales que influyen en las especies asociadas. En un bosque, por ejemplo, la especie dominante puede ser una o más especies de árboles, como el roble o el abeto; en una comunidad marina los organismos dominantes suelen ser animales, como los mejillones o las ostras. La dominancia puede influir en la diversidad de especies de una comunidad porque la diversidad no se refiere solamente al número de especies que la componen, sino también a la proporción que cada una de ellas representa.

La naturaleza física de una comunidad queda en evidencia por las capas en las que se estructura, o su estratificación. En las comunidades terrestres, la estratificación está influida por la forma que adoptan las plantas al crecer. Las comunidades sencillas, como los pastos, con escasa estratificación vertical, suelen estar formadas por dos capas: suelo y capa herbácea. Un bosque puede tener varias capas: suelo, herbácea, arbustos, árboles de porte bajo, árboles de porte alto con copa inferior o superior, entre otras. Estos estratos influyen en el medio ambiente físico y en la diversidad de hábitats para la fauna. La estratificación vertical de las comunidades acuáticas, por contraste, recibe sobre todo la influencia de las condiciones físicas: profundidad, iluminación, temperatura, presión, salinidad, contenido en oxígeno y dióxido de carbono.

Hábitat y nicho

La comunidad aporta el hábitat, el lugar en el que viven las distintas plantas o animales. Dentro de cada hábitat, los organismos ocupan distintos nichos. Un nicho es el papel funcional que desempeña una especie en una comunidad, es decir, su ocupación o modo de ganarse la vida. Por ejemplo, el candelo oliváceo vive en un hábitat de bosque de hoja caduca. Su nicho, en parte, es alimentarse de insectos del follaje. Cuanto más estratificada esté una comunidad, en más nichos adicionales estará dividido su hábitat.

Tasas de crecimiento de la población

Las poblaciones tienen una tasa de nacimiento (número de crías producido por unidad de población y tiempo) una tasa de mortalidad (número de muertes por unidad de tiempo) y una tasa de crecimiento. El principal agente de crecimiento de la población son los nacimientos, y el principal agente de descenso de la población es la muerte. Cuando el número de nacimientos es superior al número de muertes la población crece y cuando ocurre lo contrario, decrece. Cuando el número de nacimientos es igual al de muertes en una población dada su tamaño no varía, y se dice que su tasa de crecimiento es cero.

Al ser introducida en un medio ambiente favorable con abundantes recursos, una pequeña población puede experimentar un crecimiento geométrico o exponencial, algo similar al interés compuesto. Muchas poblaciones experimentan un crecimiento exponencial en las primeras etapas de la colonización de un hábitat, ya que se apoderan de un nicho infraexplotado o expulsan a otras poblaciones de uno rentable. Las poblaciones que siguen creciendo exponencialmente, no obstante, acaban llevando al límite los recursos, y entran con rapidez en declive debido a algún acontecimiento catastrófico como una hambruna, una epidemia o la competencia con otras especies. En términos generales, las poblaciones de plantas y animales que se caracterizan por experimentar ciclos de crecimiento exponencial son especies con abundante descendencia y se ocupan poco de sus crías o producen abundantes semillas con pocas reservas alimenticias. Estas especies, que acostumbran a tener una vida corta, se dispersan con rapidez y son capaces de colonizar medios ambientes hostiles o alterados. A menudo reciben el nombre de especies oportunistas.

Otras poblaciones tienden a crecer de forma exponencial al comienzo y logísticamente a continuación, es decir, su crecimiento va disminuyendo al ir aumentando la población, y se estabiliza al alcanzar los límites de la capacidad de sustentación de su medio ambiente. A través de diversos mecanismos reguladores, tales poblaciones mantienen un cierto equilibrio entre su tamaño y los recursos disponibles. Los animales que muestran este tipo de crecimiento poblacional tienden a tener menos crías, pero les proporcionan atención familiar; las plantas producen grandes semillas con considerables reservas alimenticias. Estos organismos tienen una vida larga, tasas de dispersión bajas y son malos colonizadores de hábitats alterados. Suelen responder a los cambios en la densidad de población (número de organismos por unidad de superficie) con cambios en las tasas de natalidad y de mortalidad en lugar de con la dispersión. Cuando la población se aproxima al límite de los recursos disponibles, las tasas de natalidad disminuyen y las de mortalidad entre jóvenes y adultos aumentan.

Interacciones en la comunidad

Las principales influencias sobre el crecimiento de las poblaciones están relacionadas con diversas interacciones, que son las que mantienen unida a la comunidad. Estas incluyen la competencia, tanto en el seno de las especies como entre especies diferentes, la depredación, incluyendo el parasitismo, y la coevolución o adaptación.

Competencia

Cuando escasea un recurso compartido, los organismos compiten por él, y los que lo hacen con mayor éxito sobreviven. En algunas poblaciones vegetales y animales, los individuos pueden compartir los recursos de tal modo que ninguno de ellos obtenga la cantidad suficiente para sobrevivir como adulto o reproducirse. Entre otras poblaciones, vegetales y animales, los individuos dominantes se apoderan de la totalidad de los recursos y los demás quedan excluidos. Individualmente, las plantas tienden a aferrarse al lugar donde arraigan hasta que pierden vigor o mueren, e impiden que sobrevivan otros individuos controlando la luz, la humedad y los nutrientes del entorno.

Muchos animales tienen una organización social muy desarrollada a través de la cual se distribuyen recursos como el espacio, los alimentos y la pareja entre los miembros dominantes de la población. Estas interacciones competitivas pueden manifestarse en forma de dominancia social, en la que los individuos dominantes excluyen a los subdominantes de un determinado recurso, o en forma de territorialidad, en la que los individuos dominantes dividen el espacio en áreas excluyentes, que ellos mismos se encargan de defender. Los individuos subdominantes o excluidos se ven obligados a vivir en hábitats más pobres, a sobrevivir sin el recurso en cuestión o a abandonar el área. Muchos de estos animales mueren de hambre, por exposición a los elementos y víctimas de los depredadores.

La competencia entre los miembros de especies diferentes provoca el reparto de los recursos de la comunidad. Las plantas, por ejemplo, tienen raíces que penetran en el suelo hasta diferentes profundidades. Algunas tienen raíces superficiales que les permiten utilizar la humedad y los nutrientes próximos a la superficie. Otras que crecen en el mismo lugar tienen raíces profundas que les permiten explotar una humedad y unos nutrientes no disponibles para las primeras.

Depredación

Una de las interacciones fundamentales es la depredación, o consumo de un organismo viviente, vegetal o animal, por otro. Si bien sirve para hacer circular la energía y los nutrientes por el ecosistema, la depredación puede también controlar la población y favorecer la selección natural eliminando a los menos aptos. Así pues, un conejo es un depredador de la hierba, del mismo modo que el zorro es un depredador de conejos. La depredación de las plantas incluye la defoliación y el consumo de semillas y frutos. La abundancia de los depredadores de plantas, o herbívoros, influye directamente sobre el crecimiento y la supervivencia de los carnívoros. Es decir, las interacciones depredador-presa a un determinado nivel trófico influyen sobre las relaciones depredador-presa en el siguiente. En ciertas comunidades, los depredadores llegan a reducir hasta tal punto las poblaciones de sus presas que en la misma zona pueden coexistir varias especies en competencia porque ninguna de ellas abunda lo suficiente como para controlar un recurso. No obstante, cuando disminuye el número de depredadores, o estos desaparecen, la especie dominante tiende a excluir a las competidoras, reduciendo así la diversidad de especies.

Parasitismo

El parasitismo está estrechamente relacionado con la depredación. En él, dos organismos viven unidos, y uno de ellos obtiene su sustento a expensas del otro. Los parásitos, que son más pequeños que sus huéspedes, incluyen multitud de virus y bacterias. Debido a esta relación de dependencia, los parásitos no suelen acabar con sus huéspedes, como hacen los depredadores. Como resultado, huéspedes y parásitos suelen coevolucionar hasta un cierto grado de tolerancia mutua, aunque los parásitos pueden regular la población de algunas especies huéspedes, reducir su éxito reproductivo y modificar su comportamiento.

Coevolución

La coevolución es la evolución conjunta de dos especies no emparentadas que tienen una estrecha relación ecológica, es decir, que la evolución de una de las especies depende en parte de la evolución de la otra. La coevolución también desempeña un papel en las relaciones depredador-presa. Con el paso del tiempo, al ir desarrollando el depredador formas más eficaces de capturar a su presa, ésta desarrolla mecanismos para evitar su captura. Las plantas han desarrollado mecanismos defensivos como espinas, púas, vainas duras para las semillas y savia venenosa o de mal sabor para disuadir a sus consumidores potenciales. Algunos herbívoros son capaces de superar estas defensas y atacar a la planta. Ciertos insectos, como la mariposa monarca, pueden incorporar a sus propios tejidos sustancias venenosas tomadas de las plantas de las que se alimentan, y las usan como defensa contra sus depredadores. Otros organismos similares relacionados con ella pueden adquirir, a través de la selección natural, un patrón de colores o una forma que imita la de la especie no comestible. Dado que se asemejan al modelo desagradable, los imitadores consiguen evitar la depredación. Otros animales recurren a asumir una apariencia que hace que se confundan con su entorno o que parezcan formar parte de él. El camaleón es un ejemplo bien conocido de esta interacción. Algunos animales que emplean olores desagradables o venenos a modo de defensa suelen exhibir también coloraciones de advertencia, normalmente colores brillantes o dibujos llamativos, que actúan como aviso adicional para sus depredadores potenciales.

Otra relación coevolutiva es el mutualismo, en el que dos o más especies dependen la una de la otra y no pueden vivir más que asociadas. Un ejemplo de mutualismo es el de las micorrizas, relación forzosa entre determinados hongos y las raíces de ciertas plantas. En uno de los grupos, el de las ectomicorrizas, los hongos forman una capa o manto en torno a las radicelas. Las hifas de los hongos invaden la radicela y crecen entre las paredes celulares, además de extenderse suelo adentro a partir de ella. Los hongos, que incluyen varias setas comunes de los bosques, dependen del árbol para obtener energía. A cambio, ayudan al árbol a obtener nutrientes del suelo y protegen sus raicillas de ciertas enfermedades. Sin las micorrizas, algunos grupos de árboles, como las coníferas y los robles, no pueden sobrevivir y desarrollarse. Por su parte, los hongos no pueden existir sin los árboles.

Sucesión y comunidades clímax

Los ecosistemas son dinámicos en el sentido de que las especies que los componen no son siempre las mismas. Esto se ve reflejado en los cambios graduales de la comunidad vegetal con el paso del tiempo, fenómeno conocido como sucesión. Comienza por la colonización de un área alterada, como un campo de cultivo abandonado o un río de lava recientemente expuesto, por parte de especies capaces de tolerar sus condiciones ambientales. En su mayor parte se trata de especies oportunistas que se aferran al terreno durante un periodo de tiempo variable. Dado que viven poco tiempo y que son malas competidoras, acaban siendo reemplazadas por especies más competitivas y de vida más larga, como ocurre con ciertos arbustos que más tarde son reemplazados por árboles. En los hábitats acuáticos, los cambios de este tipo son en gran medida resultado de cambios en el medio ambiente físico, como la acumulación de sedimentos en el fondo de un estanque. Al ir haciéndose éste menos profundo, se favorece la invasión de plantas flotantes como los lirios de agua y de plantas emergentes como las espadañas. La velocidad de la sucesión depende de la competitividad de la especie implicada; de la tolerancia a las condiciones ambientales producidas por el cambio en la vegetación; de la interacción con los animales, sobre todo con los herbívoros rumiantes, y del fuego. Con el tiempo, el ecosistema llega a un estado llamado clímax (estado óptimo de una comunidad biológica, dadas las condiciones del medio), en el que todo cambio ulterior se produce muy lentamente, y el emplazamiento queda dominado por especies de larga vida y muy competitivas. Al ir avanzando la sucesión, no obstante, la comunidad se vuelve más estratificada, permitiendo que ocupen el área más especies de animales. Con el tiempo, los animales característicos de fases más avanzadas de la sucesión reemplazan a los propios de las primeras fases.

Biosfera terrestre

La biosfera terrestre contiene numerosos ecosistemas complejos que contienen, en conjunto, todos los organismos vivos del planeta. Esta perspectiva única de la Tierra permite apreciar la inmensidad y complejidad de la biosfera terrestre. En dirección a la Luna en diciembre de 1972, el Apolo 17 tomó esta imagen de la Tierra, en la que se ven la península de Arabia y el continente africano.

Ecosistema

La ilustración representa un ecosistema simplificado, una comunidad de organismos y sus interacciones con el entorno. Los productores, consumidores, descomponedores y la materia abiótica constituyen un todo integrado cuya fuente de energía es el Sol. El papel de cada elemento del ecosistema se ilustra arriba.

El carbono y el oxígeno en el ecosistema

Todos los organismos vivos están formados por compuestos de carbono. Algunas plantas y algas son capaces de sintetizar estos compuestos por medio de la luz solar. El proceso, llamado fotosíntesis, emplea el dióxido de carbono atmosférico y el agua como materias primas. Los organismos que carecen de capacidad fotosintética obtienen el carbono, de forma indirecta, a través de las plantas. El oxígeno es un subproducto de la fotosíntesis necesario para la vida de casi todas las plantas y animales. Los organismos que respiran oxígeno exhalan dióxido de carbono y también, tras la descomposición de sus cuerpos, devuelven carbono a la atmósfera.

Sucesión de las comunidades vegetales

Un campo devastado por el fuego o despejado para el uso agrícola recupera la vegetación con rapidez en ausencia de erosión. En los primeros años, surgen praderas, pobladas por especies oportunistas capaces de tolerar las condiciones ambientales. Después surgen arbustos y plantas más competitivas que no tardan en ser dominantes. Luego brotan los primeros árboles y, tras el primer siglo, un bosque de coníferas ocupa lo que fue una superficie sobreexplotada o calcinada. El bosque crea un nuevo entorno que, tras otro medio siglo, permite la competencia de otras especies de árboles que pueden llegar a reemplazar a los iniciales. En el ejemplo, la comunidad clímax está dominada por árboles caducifolios. La sucesión, debida a cambios ambientales, es un proceso recurrente e inacabable.


¿Te sirvió este ejemplo?
 (19.7%) SI    NO (80.3%)




Compartir este ejemplo:

O bien, copie y pegue el siguiente código en su sitio web, blog o foro:





Comentarios
Para dejar un comentario, regístrese gratis o si ya está registrado, inicie sesión.


Todavía no se ha escrito ningún comentario.


Ejemplos relacionados
Organismos pluricelulares Publicado el 2017-04-13 09:46:45
Los organismos pluricelulares o multicelulares son aquellos que están compuestos por dos o más células. Son lo contrario de los organismos u...
Organismos unicelulares Publicado el 2017-04-11 07:10:28
Organismos unicelulares son aquellos seres vivos que, al contrario de los multicelulares, están compuestos por una única célula. La circulac...
Organismos aerobios o aeróbicos Publicado el 2011-06-09 15:41:57
Se denominan aerobios o aeróbicos a los organismos que necesitan del oxígeno diatómico para vivir o poder desarrollarse. Un "ambiente aerobi...
Ley de la segregación Publicado el 2011-05-12 12:03:53
- Los alelos explican variaciones en caracteres. Un alelo es uno de varios versiones de un gene - variaciones de un rasgo dado si usted domi...
Traqueofitas Publicado el 2011-05-12 12:02:56
También llamadas plantas vasculares. Son organismos formados por células vegetales, que poseen un ciclo de vida en el que se alternan las ge...
© 2010 Ejemplos10.com · Recopilatorio de ejemplos de todo tipo gratis   Aviso Legal | Contacto | Pendidentes

eXTReMe Tracker